ETHNOBOTANICAL ASSESSMENT OF THE MEDICINAL FLORA OF KHYBER AGENCY, PAKISTAN

Kashif Ali¹, Muhammad Shuaib^{2,*}, Zahid Hussain³, Wasim Sajjad^{4,5}, Fawad Ali¹ and Muhammad Fazil¹

ABSTRACT

The valley of Khyber Agency is blessed with a diverse and rich flora. This ethnobotanical study in the said area provides the indigenous information for the traditionally used native medicinal plants that are cheaper and locally accessible to the inhabitants of the locality. The present study was carried out to document and preserve the indigenous knowledge of native community about the local flora of Khyber Agency, Pakistan during spring, summer, autumn and winter seasons of 2014-15. Data were collected from the local farmers (both males and fermales) and herbalists with the help of a comprehensive questionnaire. Interviews were conducted from 130 respondents about the ethnobotanical uses of medicinal plants of the locality. A total of 30 local plants were documented to be used by the local people. These plants are distributed in 23 different plant families and were used for various ethnobotanical purposes i.e. medicine, timber wood, construction, fodder and making different tools as well. Among these families, Papilionaceae and Solanaceae were represented by three species (10%) each, followed by Apocynaceae, Asteraceae, Rhammaceae (10%), Umbeliferaceae (5%) and Brassicaceae (40%) with two species (6.6%) each while the remaining families i.e. Amaranthaceae, Cannabaceae. Arecaceae, Asclepiadaceae, Capparidaceae, Chenopodiaceae, Convovulaceae, Euphorbiaceae, Fumariaceae. Malvaceae, Meliaceae, Mimosaceae, Moraceae, Oxalidaceae and Poaceae by one (3.33%) species. The respondents used different plants parts for a variety of ethonobotianical uses. The plant parts included whole plants (used by 63% of the respondents) followed by leaves (22%), seeds (9%), fruits and roots each used by only 3%of

¹Dept. of Botany, Islamia College Peshawar, Pakistan

²School of Ecology and Environmental Science, Yunnan University, No.2 North Cuihu road, Kunming, Yunnan, 650091, P.R. China ³Dept. of Weed Science, The University of Agriculture Peshawar, Pakistan

⁴Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, CAS Lanzhou 730000, PR China; ⁵University of CAS, Beijing 100049, P.R. China.

^{*}Corresponding author's email: zevadz44@yahoo.com

the interviewed community. Highest number of the plant species was used for just the stomach disorders and antipyretics. In conclusion, the target area is solely depended on medicinal plants for the treatment of the ailments. Moreover, this ethnobotanical study was important to preserve the precious indigenous knowledge of the aged people before it is lost for ever.

Key words: Ethnobotanical study, indigenous knowledge, Khyber agency, medicinal plants, preservation.

Citation: Ali, K., M. Shuaib, Z. Hussain, W. Sajjad, F. Ali and M. Fazil. 2016. Ethnobotanical assessment of the medicinal flora of Khyber agency, Pakistan. Pak. J. Weed Sci. Res. 22(4): 607-616.

INTRODUCTION

Khyber agency lies on 33°45' to 34°20' north latitudes and $70^{\circ}27'$ to $71^{\circ}32'$ east longitudes. The total area of Khyber agency is 2576 km². The district Peshawar is situated towards its east, Khuram agency towards west, Afghanistan, Muhmand agency towards north and Kohat is located to its south (Ullah et al., 2013). Due to different climatic zones, Pakistan has very rich flora (Haq et al., 2010). Ethnobotany is the study of humans, plants and their relationship which may be useful and harmful as well. In Pakistan, about 10% of the vascular plants are used for medicinal values. Several ethnobotanical surveys have been conducted in many sites as well as in different parts of the Khyber Pakhtunkhwa (KP) province (Waheed et al., 2013; Hassan et al., 2015; Begum et al., 2005; Ibrar et al., 2007; Sher and Hussain, 2009; Hussain et al., 2006).

The local people traditional use the medicinal plants for different ailments and remedies (Waheed et al., 2013). Similarly, the local community of the target area has potential knowledge about the uses of plants. They prioritized the use of medicinal flora because of the accessibility and cheapness. The main purpose of the present study was to collect and compile the traditional information of Khyber agency, Pakistan before the knowledge gets vanished with the death of the old people, as the new generation has no interest in the new technological era.

In the previous investigation at Dir (Lower), the collection of 40 important plant species was used as medicinal, fodder, wood, bee keeping, vegetable, shelter, timber, agricultural tools and ornamental purposes (Shuaib et al., 2014). Then, similar findings were obtained in Dir (Upper) district by Khan et al. (2016), who explained 64 different wild plant species in the area.

Figure 1. Map of the Khyber agency, Pakistan.

MATERIALS AND METHODS

Field activities were conducted during 2014-15 to record the ethnobotanical data of the important species. The information about the survey area was collected before starting the research work. Questionnaires containing various questions about medicinal plants were designed. Thus, the ethnomedicinal knowledge was obtained from various people of different age and sex, however priority was given to aged experienced people and hakims (Herbalists).

Data were collected during all the summer, autumn, spring and winter seasons. In light of the 130 respondents interviewed, the ethnobotanically used medicinal plant species were collected, dried and pasted on herbarium sheets. The identification and nomenclature of the collected plant specimens was carried out with the help of the available literature and methods describe by Nasir and Ali (1978-2007) in details. The voucher specimens were deposited in the herbarium of the Department of Botany of the Islamia College Peshawar, Pakistan for future references.

RESULTS AND DISCUSSION

During this ethnomedicinal survey, a total of 30 plant species belonging to 23 various families were documented and an inventory was made (Fig. 4). Among these species, whole plants were used most frequently by 63% of the respondents for medicinal uses, followed by 22% of the respondents who used leaves and 9% of them used seeds

(Fig. 2). Thus, out of the 30 plant species, 21 were reported to be used for medicinal purpose, followed by 5 plant species each used for fodder, fruiting and fuel purposes (Table-2). Hassan *et al.* (2015) reported similar results which confirmed the present findings. The local people utilized these plant species in their daily lives and also these were the main sources of their economy and health care. Many human disorders were treated by the local hakeems (herbalists) including stomach disorders, chest problems and so on.

The research area is rich in medicinal flora (Table-1). The findings were in analogy with the report of Waheed *et al.* (2013). The local people of the target area frequently used only the herbs for their various ethnomedicinal and medicinal uses. However, woody plants were also used for fuel, construction, protection and ailments curing as well. The results also indicated that stomach and chest disorders were common in the research area for which various plant species were used by the hakeems (Herbalists).

Most of the medicinal flora reported has been found to treat more than one disorder. For instance, Fumaria indica is utilized against stomach disorder, eye infection and also in fever. Solanum suretense is used as expectorant and for chest problem as well. Beside these plants, Coriandrum sativum and Foeniculum vulgare were used frequently for chest and stomach problems. Hassan et al. (2015) also reported different plant species used to treat more than one disorder similar to the findings in this instant research exploration. Ziziphus jujube honey is the most expensive and famous among the people of the target area due to its taste and ethnomedicinal value. A similar report of Waheed et al. (2013) showed the importance of Ziziphus species. Capparis desidua, Acacia modesta, Zizphus jujubea are also utilized by local people for fuel and tools making purpose.

Hassan *et al.* (2015) reported that cutting and over grazing are the main causes of loss of plant diversity similar to the present findings. Ibrar *et al.* (2007) also reported ethnobotanical study of district Shangla where the findings are analogous to the findings over here.

The plants diversity in the target area is under threat from overgrazing, over-exploitation and excessive collection of wood for fuel. The cows, buffalos, sheep and goats are the common grazers in the research area which caused considerable damage to the medicinal flora of the area. The plants which were used as fodder include Cynodon dactylon, Brassica compestris, Chenopodium murale. The plant species like Capparis desidua, Acacia modesta, Ziziphus jujuba, Melia azedarach and Dalbergia sisso are utilized by the local people as fuel. The results of Khan et al. (2003), Ibrar et al. (2007) and Shuaib et al. (2015) were in similarity with the present findings.

Thus, the people of the study area were much depended on native flora for their basic needs including fuel, medicine and animal fodder. The cutting of medicinal flora will ultimately cause the deterioration in diversity that may eventually lead to extinction. People were unaware of the proper collection and harvesting methods of the plants. Therefore, they must be trained for the judicious cutting and collection of the medicinal herbs. Some trees like *Capparis desidua*, *Acacia modesta*, *Ziziphus jujube* were also cut for their multipurpose usage. Overgrazing is another massive threat to the flora of the reported area. Immediate precautionary measures are needed for conservation of endangered plant species.

CONCLUSION

The local area of Khyber agency is rich in medicinal plants that are used for treating different diseases instead of using imported allopathic medicine. The important plant species are decreasing day by day due to deforestation and some species are becoming extinct in the near future. Urbanization is rapidly increasing and human needs are increasing accordingly with the population pressure. So the ratio of these precious plants is also decreasing for the last several years. The majority of people in the locality are ignorant of the proper methods of collection and mode of administration of these medicinal plants. So, the government and NGOs are needed to arrange seminars and workshops to make the local inhabitants aware of importance of these medicinal plants, the proper methods of collection, preservation, administration, conservation and uses of these plant species. The documentation of the indigenous knowledge about these species is also needed for utilization in future. There is dire need to adapt horticulture in the area and to impart the knowledge of planting to the local communities. This will help in sustainable use of the medicinal flora for future generations.

ACKNOWLEDGMENT

All the authors are thankful to the local community, herbalists for sharing with us their precious knowledge regarding the ethnobotanical and medicinal uses of the local flora, which will help the concerned organizations to conserve the flora for future generations.

Table-1. Different categories of the ethnobotanical uses of the reported species with their number and percentage

[Ethnobotanical features	No of	Percentage	
-	Ethno modicinal plant aposics	species		
1.	Ethno medicinal plant species	20	66.6	
2.	Fodder plant species	5	16.5	
3.	Fencing species	5	16.5	
4.	Fruiting plant species	5	16.5	
5.	Fuel plant species	5	16.5	
6.	Furniture making species	3	10.0	
7.	Condiment species	2	6.7	
8.	Poisonous species	1	3.3	
9.	Ornamental species	1	3.3	

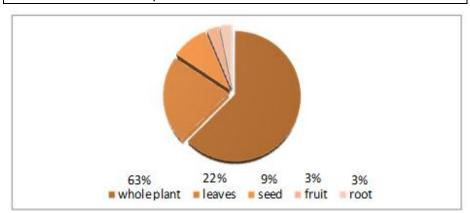
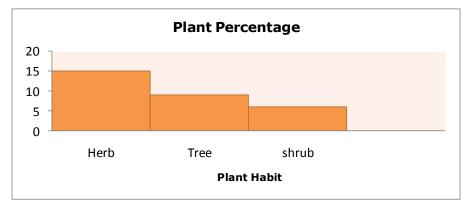
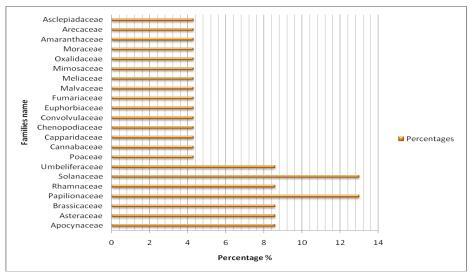


Figure 2. Percent use of plant parts in Khyber agency, Pakistan




Figure 3. Habit of medicinal plants in Khyber agency, Pakistan

613

Table-2. Checklist of plant species of Khyber Agency, Pakistan for their ethnobotanical and medicinal uses

S.No.	Family name	Botanical Name	Local name	Habit	Part used	Ethnobotanical uses
1.	Amaranthaceae	Amaranathus viridis Linn.	Arakhy	Herb	Leave	It is use for gastro intestinal problem and fodder as well
2.	Apocynaceae	Nerium olender Griff.	Gandara	Shrub	Whole plant	Use for ornamental purpose
3.		Rhazya stricta Dcne	Unknown	Shrub	Roots and leaves	The extracts of leave are used for toothache and for anti-cancer.
4.	Arecaceae	Phoenix dactylifera L.	Kajora	Tree	Whole plant	Its fruit is very tasty and laxative. Ropes are made of from its leave
5.	Asclepiadaceae	Calotropis procera R.Brown.	Spulmay	Shrub	Whole plant	It is used as anthelmintic and expectorant. Their flowers were used for tumor.
6.	Asteraceae	Calendula arvensis L.	Zirguly	Herb	Leave	Leave are used in digestive disorder usually in spleen enlargement
7.		Parthenium hysterophorus Linn.	Banga	Herb	Leave and branches	It is used for urine infection, fever and heart problem.
8.	Brassicaceae	Brassica compestris L.	Zyarsharsham	Shrub	Whole plant	It is used as fodder and vegetable
9.		Eruca sativa Mill.	Sharshamy	Herb	Whole plant	Oil obtained from seeds, which is used for cooking and as anti scabic. Used as fodder and fuel.
10.	Cannabaceae	Cannabis sativa L.	Bhang		Whole plant	It is used as chars, diuretic and anodyne
11.	Capparidaceae	Cappris deciduas Forssk.	Kirra	Tree	Whole plant	Fruit used for eating, in making jams. Wood used in tool making
12.	Chenopodiaceae	Chenopodium murale L.	Sarmy	Herb	Leave	Used as fodder
13.	Convolvulaceae	Convolvulus arvensis L.	Perwata	Herb	Whole plant	It is used in skin disease and in chest infection. Used as fodder.
14.	Euphorbiaceae	Euphorbia helioscopia L.	Gandabotay	Herb	Whole plant	Plant extract used for antipyretic.
15.	Fumariaceae	Fumaria indica Linn.	Shshtry	Herb	Whole plant	It is useful in stomach disorder, eye infection and in fever
16.	Malvaceae	Malva neglecta Wall.		Herb	Whole plant	Used as fodder and in cooking.
17.	Meliaceae	Melia azedarach L.	Bakyana	Tree	Leave and seed	Plant used as fuel and for shelter. Leaves used as antiseptic and seeds used in blood disorders.

S.No.	Family name	Botanical Name	Local name	Habit	Part used	Ethnobotanical uses
18.	Mimosaceae	Acacia modesta Wall.	Palosa	Tree	Whole plant	Leaves used as cooling agent. Bark used as analgesic. Also used as fuel and for shelter.
19.	Moraceae	Morus nigra L.	Toot	Tree	Fruit and seed	Fruit is eaten wood is used as fuel
20.	Oxalidaceae	Oxalis corniculata L.	Trawaky	Herb	Whole plant	Used in stomach disorder and Cooling agent
21.	Papilionaceae	Albizia lebback L.	Sreekh	Tree	Whole plant	It is used as fuel and in making furniture
22.		Dalbergia sisso Roxb.	Shawa	Tree	Whole plant	Used as fuel and for shelter. Used also in making agriculture tools
23.		Medicago sativa L.	Peshteray	Herb	Whole plant	It is used as vegetable and fodder. Seed are used for digestive disorder and for pain
24.	Poaceae	Cynodon dactylon (L.) Peris.	Kabal	Herb	Whole plant	Plant is used as food and for ornamental purpose
25.	Rhamnaceae	Ziziphus jujube Mill.	Bera	Tree	Whole plant	Fruit is used for eating. Plant is used for shelter and for fuel. A honey bee species
26.		Ziziphus nummularia (Burm.f).	Karkana	Tree	Whole plant	Fruit is used for eating and digestive disorder. Used as fuel, shelter and in furniture.
27.	Solanaceae	Solanum suretenses Burn.	Azghaka	Herb	Leaves and roots	Used as expectorant and in cough. It is also used for chest problem.
28.		Withania coagulans Dunal.		Shrub	Whole plant	Fruit is used for stomach disorder
29.		Whithania somnifera (L.) Dunall.	Kotilal	Shrub	Whole plant	Fruit is used for abdominal pain.
30.	Umbeliferaceae	Coriandrum sativum L.	Dhanya	Herb	Whole plant	It is used as condiments used in digestive disorder. Used for cough and dysentery.
31		Foeniculum vulgare Mill.	Kaga	Herb	Seeds	Seeds used in digestive disorder and as condiments

Figure 4. Family names and percentage of the local flora of Khyber agency, Pakistan

REFERENCES CITED

- Ali, S.I. and M. Qasier. 1995-2007. Flora of Pakistan. Karachi: Department of Botany, University of Karachi.
- Barkatullah, M. Ibrar and F. Hussain. 2009. Ethnobotanical studies of plants of Charkotli Hills, Batkhela District, Malakand, Pakistan. Front. Biol. China, 4: 539–548.
- Begum, H., M.M. Jan and F. Hussain. 2005. Ethnobotanical study of some plant of Dherijulagram Malakand Agency. Pak. Int. J. Bio. Biotechnol. 2: 597-602.
- Hussain, F., L. Badshah and G. Dastigir. 2006. Folk medicinal uses of some plants of South Waziristan, Pakistan. Pak. J. Pl. Sci. 12(1): 27-40.
- Haq, F., A. Habib, A. Mukhtar, A. Ishtiaq and Rahatullah. 2010. Species diversity of vascular plants of Nandiarvalley western Himalaya, Pakistan. Pak. J. Bot. 42: 213-229.
- Hassan, U.H., W. Murrad, N. Ahmad, N. Ahmad, A. Tariq, I. Khan., N. Akhtar and S. Jan. 2015. Indigenous uses of the plant of malakand valley, District Dir (Lower), Khyber Paktunkhaw, Pakistan. Pak. J. Weed Sci. Res. 21(1): 83-99.
- Ibrar, M., F. Hussain and S. Amir. 2007. Ethnobotanical studies on plant resources of Ranyal Hills. District Shangla, Pakistan. Pak. J. Bot. 39: 329-337.
- Islam, M., H. Ahmad, A. Razzaq, N. Akhtar and I. Khan. 2006. Weeds and medicinal plants of Shawar valley, district Swat. Pak. J. Weed Sci. Res. 12(1-2): 83-88.

- Nasir, E and S.I. Ali. 1978-2007. Flora of West Pakistan, Department of Botany, University of Karachi, Karachi.
- Ullah, S and A. Rashid. 2014. Medicinal diversity of weeds in the historical valley of Landikotal, Khyber Agency, Pakistan. Pak. J. Weed Sci. Res. 20(4): 531-539.
- Sher, H and F. Hussain. 2009. Ethnobotanical evaluation of some plant resources in Northern part of Pakistan. African J. Biotechnol. 8(17): 4066-4076.
- Shinwai, Z. K and M. Shah. 1996. The Ethnobotany of Kharan District, Baluchistan. Proc. 1st traning workshop of Ethnobotany application and conservation PARC, Islamabad. Weed Sci. Res. 12(1-2): 37-46.
- Shuaib, M., I. Khan, Sharifullah, R. Khan, Hashmatullah, S. Mubarik and R. Naz. 2014. Ethnobotanical studies of spring flora of Dir Lower, Khyber Pakhtunkhwa, Pakistan. Pak. J. Weed Sci. Res. 20(1): 37-49.
- Shuaib, M., I. Khan, Sharifullah and M.T. Khan. 2015. Study of Medicinal Plants of Lower Dir, Timergara, Tehsil Balambat, Khyber Paktunkhaw-Pakistan. Am. Eurasian J. Agric. Environ. Sci. 15: 2088–2094.
- Waheed, M., A. Azizullah, M, Adnan, A.Tariq, K.U. Khan, S. Waheed and A. Ahmed. 2013. Ethnobotanical assessment of plant resources of Banda DaudShah, District Karak. Pak. J. Ethnobot. Ethnomed. 9: 7.