ECOLOGICAL CHARACTERISTICS OF WEED FLORA IN THE WHEAT CROP OF MASTUJ VALLEY, DISTRICT CHITRAL, KHYBER PAKHTUNKHWA, PAKISTAN

Syed Mukaram Shah¹*, Asad Ullah and Fazal Hadi

ABSTRACT

Weed survey in the wheat (Triticum aestivum L.) crop of Mastuj valley was conducted during July and August, 2013. A total of 52 plant species belonging to 46 genera and 23 families were reported first time from the investigated area. The dominant families were Asteraceae, Papilionaceae and Poaceae each with 10, 7 and 5 species, respectively. Life-form spectra showed that therophytes were the leading life-form class with 42 species followed by geophytes and hemicryptophytes each with 5 species. Leaf-size classes indicated that there were 19 mesophyllous, 12 macrophyllous, six nanophyllous, microphyllous, 10 three megaphyllous, one leptophyllous and one aphyllous species. Phenological classification indicated that 46 plant species were in reproductive stage, five in post-reproductive stage, and one species was in pre-reproductive stage. These findings might be helpful to weed ecologists, agronomists and other agricultural scientists involved in weed management.

Key words: Ecology, Mastuj valley, Pakistan, weeds, wheat.

Citation: Shah, S.M., A. Ullah and F. Hadi. 2014. Ecological characteristics of weed flora in the wheat crop of Mastuj valley, District Chitral, Khyber Pakhtunkhwa, Pakistan. Pak. J. Weed Sci. Res. 20(4): 479-487.

INTRODUCTION

Wheat (*Triticum aestivum* L.) is grown as one of the major cereal crops both in the irrigated and non-irrigated lands of District Chitral including Mastuj valley. Wheat is cultivated in all the possible available lands and is a source of staple food for humans and fodder for their cattle. Mastuj River, Laspur River, glaciers and precipitation in the form of rainfall and snowfall are the permanent source of irrigation in the area. The soil is mostly sandy along riverbeds, clayey in wetlands and stony along foothills. Weather conditions exhibit

¹Centre of Plant Biodiversity and Botanical Garden, University of Peshawar, Pakistan

^{*}Corresponding author's email: shahecology95@yahoo.com

blossom spring, rainy summer, windy autumn and snowy winters. Hussain et al. (2004) recognized three weed communities in the wheat fields of Tehsil Mastuj. Sher et al. (2011) reported 40 weed species belonging to 21 families from wheat crop of District Swabi. Poaceae was the dominant family while therophytes and microphylls were the leading life-form and leaf-size classes. Memon et al. (2013) reported 23 weed species belonging to 10 families from wheat crop of District Khairpur, Sindh. Scursoni et al. (2014) surveyed 373 wheat fields in 2 different cropped areas and found rich species differences in both the southwest and southeast regions of the eastern sites of Buenos Aires, Argentina. The weed flora of wheat crop has also been reported from District Chitral (Hussain et al., 2007), Dir (Shah et al., 2004), Swat (Akhtar and Hussain, 2007), Mardan (Marwat et al., 2006), Peshawar (Hussain et al., 2012), Bannu (Ullah et al., 2011), Rahim Yar Khan (Waheed et al., 2009), Toba Tek Singh (Qureshi et al., 2009) and Dera Ismail Khan (Marwat et al., 2013).

MATERIALS AND METHODS

Three different cropped localities viz; Tooque, Chinar and Mastuj were analyzed for weed flora and their ecological characteristics during July and August, 2013. Plant species were collected, dried and identified with the help of Flora of Pakistan (Ali and Qaisar, 1995-2013). Biological and leaf-size spectra were known after Raunkiaer (1934) and Hussain (1989). Phenologically plants were classified by field observation into pre-reproductive, reproductive and post-reproductive stages.

RESULTS AND DISCUSSION

Fifty two species of 23 families including 20 dicot families, 2 monocot families and 1 pteridophyte family were recorded as weeds from wheat crop of Mastuj valley (Table-1). Asteraceae was leading family with 10 species (19.23%), followed by Papilionaceae with 7 species (13.46%) and Poaceae with 5 species (9.61%). Polygonaceae had 4 species (7.69%) while Caryophyllaceae had 3 species (5.76%). Ghenopodiaceae, Lamiaceae, Malvaceae, Plantaginaceae and Solanaceae had 2 species (3.84%) each. The remaining 13 families had 1 species representation. Life-form spectra (Table 2) indicated that there were 42 (80.76%) therophytes, 5 (9.61%) geophytes and 5 (9.61%) hemicryptophytes. Leaf-size spectra (Table-2) showed that mesophylls were the leading leaf-size class (19 spp., 36.53%), which was followed by microphylls (12 spp., 23.07%), macrophylls (10 spp., 19.23%), nanophylls (6 spp., 11.53%), megaphylls (three species, 5.76%) and leptophylls (one species, 1.92%). Phenological studies exhibited that 46(88.46%) weeds were in reproductive stage, five (9.61%) in post-reproductive stage, and one (1.92%) was in prereproductive stage (Table-2). Artemisia scoparia, Cannabis sativa, Datura stramonium, Lactuca serriola, Nepeta cataria and Verbascum thapsus were found in Mastuj, while Alcea rosea, Lotus corniculatus, Trachomitum venetum and Vaccaria pyramidata were present in Tooque and Epilobium hirsutum and Vicia sativa were recorded in Chinar (Table-1).

Weeds are undesirable on account of their competitive and allelopathic behavior and providing habitats for harmful organisms. The yield per acre of wheat can be increased by agronomic practices including weed control. However, the authentic identification and distribution has always been a pre-requisite for weed management (Sher *et al.*, 2011). Beside addition of organic matter to the soil and conservation of soil gene bank weeds often offer competition with the existing standing crops and thus reduce the productivity. Majority of the weeds release allelochemicals and create problems during harvesting and threshing. The present study concluded that Asteraceae, Papilionaceae and Poaceae were dominant families with maximum number of plant species. The weeds need proper prereproductive management for the better yield of wheat in the research area.

S.No.	Parameters	No. of Species	Percentage %
Α.	Life-form classes		
1.	Therophytes	42	80.76
2.	Geophytes	5	9.61
3.	Hemicryptophytes	5	9.61
В.	Leaf-size classes		
1.	Mesophylls	19	36.53
2.	Microphylls	12	23.07
3.	Macrophylls	10	19.23
4.	Nanophylls	6	11.53
5.	Megaphylls	3	5.76
6.	Leptophylls	1	1.92
7.	Aphyllous	1	1.92
С.	Phenological classes		
1.	Reproductive stage	46	88.46
2.	Post-reproductive stage	5	9.61
3.	Pre-reproductive stage	1	1.92

Table-2. Summary of Life-form, Leaf-size and Phenology of Weeds of Wheat crops of Mastuj valley, District Chitral, Pakistan

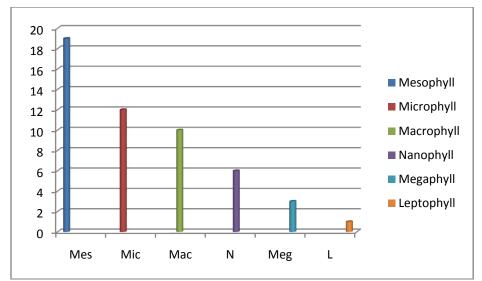


Figure 1. Leaf-size, phenology and life-forms of weeds of wheat crops in Mastuj, Chitral

Figure 2. Cnicus benedictus L., a noxious weed of wheat crop in Mastuj valley, Chitral, Pakistan.

S.No	Plant species	Localities	Localities			Leaf-	Phenology
		Tooque	Chinar	Mastuj	form	size	
Α.	Pteridophyta						
1.	1. Family Equisetaceae						
	Equisetum ramossimum Desf.	+	-	+	G	L	Rep
В.	Angiosperms						
I.	Monocotyledons						
	2. Family Iridaceae						
2.	<i>Iris ensata</i> Thunb.	+	-	+	G	Meg	Rep
	3. Family Poaceae						
3.	Bromus gracillimus Bunge.	-	+	+	Th	Mac	Post-rep
4.	Cynodon dactylon (L.) Pers.	+	+	+	Н	Mic	Rep
5.	Dichanthium annulatum Forssk. Stapf.	-	+	-	Н	Mic	Rep
6.	Phragmites karka (Retz.) Trin ex Steud.	+	+	-	G	Meg	Pre-rep
7.	Setaria glauea (Retz.) Trin ex Steud.	+	+	+	Th	Mes	Rep
II.	Dicotyledons						
	4. Family Amaranthaceae						
8.	Amaranthus reteoflexus L.	+	+	+	Th	Mes	Rep
	5.Family Apocynaceae						
9.	Trachomitum venetum (L.) Woodson.	+	-	-	Н	Mes	Rep
	6.Family Asteraceae						
10.	Artemisia parviflora Roxb.	+	+	+	Th	Mes	Rep
11.	Artemisia scoparia Waldst & Kit.	-	-	+	Н	Mic	Rep
12.	Cichorium intybus L.	+	+	+	Th	Mac	Rep
13.	Cnicus benedictus	+	+	+	Th	Mac	Rep
14.	Helianthus annuus L.	+	-	+	Th	Meg	Rep
15.	Lactuca serriola L.	-	-	+	Th	Mac	Rep

Table-1. Floristic composition and biological spectra of weeds of wheat crops in Mastuj valley, District Chitral, Pakistan.

16.	Matricaria chamomila L.	+	+	+	Th	Mic	Rep
17.	Sonchus asper (L.) Hill.	+	+	+	Th	Mes	Rep
18.	Taraxacum officinale Weber.	+	+	+	Th	Mes	Post-rep
19.	Xanthium strumarium L.	+	-	+	Th	Mac	Rep
19.		_	-	+		Mac	Кер
20	7,Family Brassicaceae				76	M: -	Den
20.	Cepsella bursa-pastoris (L.) Medic.	-	+	+	Th	Mic	Rep
	8.Family Cannabinaceae						-
21.	Cannabis sativa L.	-	-	+	Th	Mes	Rep
	9.Family Caryophyllaceae						
22.	Arenaria serphyllifolia L.	+	+	+	Th	Mic	Rep
23.	Silene conoidea L.	+	+	+	Th	Mes	Post-rep
24.	Vaccaria pyramidata Medik.	+	-	-	Th	Mes	Post-rep
	10.Family Chenopodiaceae						
25.	Chenopodium album L.	+	+	+	Th	Mes	Rep
26.	Chenopodium botrys L.	+	+	+	Th	Mes	Rep
	11.Family Convolvulaceae						•
27.	Convolvulus arvensis L.	+	+	+	Th	Mes	Rep
	12.Family Cuscutaceae						•
28.	<i>Cuscuta reflexa</i> Roxb.	+	-	+	Th	Ap	Rep
	13.Family Euphorbiaceae						
29.	Euphorbia peplus L.	+	+	+	Th	Ν	Rep
	14.Family Lamiaceae						
30.	Mentha longifolia (L.) Huds.	+	+	+	Th	Mes	Rep
31.	Nepeta cataria L.	-	-	+	Th	Mes	Rep
· · · ·	15.Family Malvaceae						
32.	Alcea rosea L.	+	_	-	Th	Мас	Rep
33.	Malva neglecta Wallr.	+	-	+	Th	Mes	Rep
	16.Family Onagraceae					1100	
34.	Epilobium hirsutum L.	_	+	_	Th	Mic	Rep
J 4 .		_	Т	-	111	PIIC	liveh

	17.Family Papilionaceae						
35.	<i>Glycyrrhiza glabra</i> L.	+	+	+	G	Mes	Rep
36.	Lotus corniculatus L.	+	-	-	Th	Ν	Rep
37.	Medicago sativa L.	+	+	+	Н	Ν	Rep
38.	Melilotus officinale (L.) Desr.	+	+	+	Th	Mic	Rep
39.	Trifolium repens L.	+	+	+	Th	Mic	Rep
40.	Trifolium resupinatum L.	+	+	+	Th	Mic	Rep
41.	Vicia sativa L.	-	+	-	Th	Mic	Rep
	18.Family Plantaginaceae						
42.	Plantago lanceolata L.	+	+	+	Th	Mac	Rep
43.	Plantago major Aitch.	+	+	+	G	Mes	Rep
	19.Family Polygonaceae						
44.	Polygonum aviculare L.	+	-	+	Th	Ν	Rep
45.	Polygonum dumetorum L.	+	+	+	Th	Mes	Rep
46.	Polygonum persicaria L.	+	+	+	Th	Mes	Rep
47.	Rumex longifolius DC.	+	+	+	Th	Mac	Post-rep
	20.Family Portulaceae						
48.	Portulaca oleracea L.	+	+	+	Th	Ν	Rep
	21.Family Rubiaceae						
49.	Galium aparine L.	+	+	+	Th	Ν	Rep
	22.Family Scrophulariaceae						
50.	Verbascum thapsus L.	-	-	+	Th	Mac	Rep
	23.Family Solanaceae						
51.	Datura stramonium L.	-	-	+	Th	Мас	Rep
52.	Solanum nigrum L.	-	+	+	Th	Mic	Rep

Keys: Life-form classes: Th. Therophytes. G. Geophytes. H. Hemicryptophytes Leaf-size classes: L. Leptophylls. N. Nanophylls. Mic. Microphylls. Mes. Mesophylls, Mac. Macrophylls. Meg. Megaphylls. Ap. Aphyllous Phenological classes: Pre-rep. Pre-reproductive. Rep. Reproductive. Post-rep. Post-reproductive

REFERENCES CITED

- Akhtar, N. and F. Hussain. 2007. Weeds of wheat fields of Village Qambar, District Swat, Pakistan. Pak. J. Pl. Sci. 13(1): 33-37.
- Ali, S.I. and M. Qaiser. 1995-2013. Flora of Pakistan. University of Karachi.
- Hussain, F. 1989. Field and Laboratory Manual of Plant Ecology. UGC, Islamabad.
- Hussain, F., A. Murad and M.J. Durrani. 2004. Weed communities in the wheat fields of Tehsil Mastuj, District Chitral, Pakistan. Pak. J. Weed Sci. Res. 10(3-4): 101-108.
- Hussain, Z., K.M. Marwat, M. Saeed, B. Gul and M.R. Khalil. 2007. Survey on weed problem in wheat crop in District Chitral (a higher altitude area) of NWFP, Pakistan. Pak. J. Weed. Sci. Res. 13(1-2): 121-127.
- Hussain, Z., F. Munsif, S.I.A. Shah, B. Gul, N. Khan, S.U.D. Kakar and A. Ahmad. 2012. Assessment of weed problem in wheat crop of Peshawar, Pakistan. Pak. J. Weed Sci. Res. 18(3): 357-366.
- Marwat, S.K., K. Usman, N. Khan, M.U. Khan, E.A. Khan, M.A. Khan and A. Rehman. 2013. Weed of wheat crops and their control strategies in Dera Ismail Khan District, Khyber Pakhtunkhwa, Pakistan. Amer. J. Pl. Sci. 4(1): 66-76.
- Marwat, K.B., Z. Hussain, B. Gul, M. Saeed and S.U. Din. 2006. Survey on weed problems in wheat crop in District Mardan. Pak. J. Weed Sci. Res. 12(4): 353-358.
- Memon, R.A., G.R. Bhatti, S. Khalid, A. Mallah and S. Ahmad. 2013. Illustrated weed flora of wheat crop of Khairpur District, Sindh. Pak. J. Bot. 45(1): 39-47.
- Qureshi, R., A. Waheed and M. Arshad. 2009. Weed communities of wheat crop in District Toba Tek Singh, Pakistan. Pak. J. Bot. 41(1): 239-245.
- Raunkiaer, C. 1934. The life-form of plant and statistical plant geography. Clarendon Press, Oxford.
- Scursoni, J.A., R. Gigon, A.N. Martin, M. Vigna, E.S. Leguizamon, C. Istilart and R. Lopez. 2014. Change in weed communities of spring wheat crops of Buenos Aires Province of Argentina. Weed Sci. 62(1): 51-62.
- Shah, N.H., G. Hassan, S.U. Rahman, N. Ahmad and F. Subhan. 2004. Weed management in wheat on Farmers' fields of DASP Command Area. Pak. J. Weed Sci. Res. 10(1-2): 25-32.
- Sher, Z., F. Hussain, L. Badshah and M. Wahab. 2011. Floristic composition, communities and ecological characteristics of weeds of wheat fields of Lahor, District Swabi, Pakistan. Pak. J. Bot. 43(6): 2817-2820.

- Ullah, I., S.M. Wazir, A. Farooq, S.U. Khan and Z. Hussain. 2011. Identification of common weeds and its distribution pattern in wheat fields of FR Bannu, Khyber Pakhtunkhwa, Pakistan. Pak. J. Weed Sci. Res. 17(4): 407-416.
- Waheed, A., R. Qureshi, G.S. Jakar and H. Tareen. 2009. Weed community dynamics in wheat crops of District Rahim Yar Khan, Pakistan. Pak. J. Bot. 41(1): 247-254.