ALLELOPATHIC EFFECTS OF EUCALYPTUS (*Eucalyptus* camaldulensis L.) ON GERMINATION AND SEEDLING GROWTH OF WHEAT (*Triticum aestivum* L.)

Muhammad Ayyaz Khan¹, Iqtidar Hussain, and Ejaz Ahmad Khan

ABSTRACT

The allelopathic influence of aqueous extracts of Eucalyptus camaldulensis L. on the germination (%) and seedling growth (fresh and dry weight) of wheat have been determined. It was noted that aqueous extracts at a concentration of 10, 15 and 20% had inhibitory effect on wheat germination and effect was found significantly higher than control treatment. Fresh and dry weight of seedling was also reduced significantly over control. The inhibitory effects were increased as the extract concentration increased. These findings indicate that wheat sown in fields which had leaf litter of E. camaldulensis L. will be adversely affected regarding germination, growth and ultimately resulting in lower yields of wheat.

Key words: *Eucalyptus camaldulensis* L., extract concentration, wheat, varieties, allelopathic effects.

INTRODUCTION

Plants live in association in groups depending upon the ecological requirements; they have generally the same structural and morphological adaptations. Whenever two or more plants occupy the same niche in nature, they compete with each other for various life support requirements (Caton *et al.*, 1999). Residues, exudates and leachates of many plant have been reported to effect the growth of the other plants, a wide range of injurious effect on crop growth has been reported as being due to phytotoxic decomposing products, release from leaves, stem, roots, fruit and seeds. Alam and Islam (2002) reported that plant produce chemicals which interfere with other plants and affect seed germination and seedling growth.

¹Department of Agronomy, Faculty of Agriculture, Gomal University, D.I. Khan. E-mail: <u>aqdusdik@yahoo.com</u>

10 Muhammad Ayyaz Khan et al. Allelopathic effects of Eucalyptus...

Chemically allelochemcial compounds have open chain molecular structures. These are secondary metabolites that have role in plant-plant, plant-soil, plant disease, plant-insect and plant predator interactions that may be beneficial or detrimental to plant (Tang *et al.* 1989, Yaduraju and Ahuja, 1996). The chemicals have harmful effects on the crop in the eco-system resulting in the reduction and delaying of germination, mortality of seedlings and reduction in growth and yield (Mcworthier, 1984; Herro and Callaway, 2003). Allelopathic chemicals secreted by some plants are natural compounds that have shown far-reaching effects on the growth and development of plants even at low concentration (Arshad and Frankenberger, 1998).

Eucalyptus belongs to the family Myraceae, mostly found in tropical region is a native to Australia. Eucalyptus spp. grow under a wide range climatic and edaphic conditions in their natural habitats (Dawar et al. 2007). In Pakistan, the Forest Department of Punjab in 1903 raised a small nursery of Eucalyptus globulus (Siddiqui and Hussain, 1980) but the interest shown in the genus during the last two decades has been considered and a lot of efforts towards its propagation have been made. This species has a high potential of allelochemicals and also essential oils. Iqbal et al. (2003) found 16 components in essential oil of *E. camaldulensis* L., out of which five compounds (α -pinene, $^{3}\Delta$ -carene, β -phellandrene, 1-8 cineole and p-cymene) were identified. The research carried out in India and Pakistan evidently pointed out about the inhibitory or stimulatory effects of this species on the germination and seedling growth of some crops. Singh et al. (1992) reported that aqueous extracts of air dried leaf litter of *E. citirodora* had inhibitory effect on the seed germination, in wheat, mustard and gram. Agroforestry having Eucalyptus trees could be harmful to crops as Nandal (1999) reported that the Eucalyptus tree belt had more adverse effect on wheat than did the Poplar tree belt. Nandal et al., (2005) reported the aqueous extracts of poplar leaves adversely affected the germination and seedling growth of some wheat varieties at high extract concentration. However, variable performance of wheat varieties in association with various tree species has been reported by many workers (Nandal et al., 1999; Gill, 1994; Singh, et al. 1993). Similar effects have been reported by Huang et al. (1997) who studied the effects of leaf extracts of Eucalyptus and others species on wheat and mungbean. He reported that extract inhibited the rooting rate of wheat cuttings by 100%. Harmful effects of Eucalyptus did not degrade under field conditions (Patel et al. 2002). To keep in view the effects of Eucalyptus on wheat crop in the light of literature review, the instant study was undertaken to determine the harmful or stimulatory effects on 12 wheat varieties under the ecological conditions of Dera Ismail Khan, NWFP, Pakistan.

MATERIALS AND METHODS

The leaves were collected from the E. camaldulensis L. trees growing alongside the road in the Faculty of Agriculture, Gomal University Dera Ismail Khan. These were washed and dried for two weeks, ground and stored at room temperature. Good quality seed of 12 varieties of wheat was obtained from the Agricultural Research Institute, Ratta Kulachi, Dera Ismail Khan. Twenty five seeds of each variety were sown on 25th October, 2005 in steel trays. These trays were filled with washed sand as growing medium. The experiment was laid out in RCBD with factorial arrangements, having four replications. The ground leaves material was soaked in distilled water in the ratio of 1:20 and kept for 24 hours. The filtrate was designated as stock solution of 100% concentration. From this stock solution other concentrations viz., 10, 15 and 20% were prepared by diluting it with distilled water and the control contained only distilled water (Hussain and Gadoon, 1981). The data were recorded on germination count, germination (%), fresh weight (g) and dry weight (g) of wheat seedlings. The data, so, recorded was statistically analyzed and significant means were separated (Steel and Torrie, 1992).

RESULTS AND DISCUSSION

Germination Counts (%)

All 12 varieties responded to the aqueous extract application (Table-1). The varieties Daman 98, Dera 98, Punjab 96, Ingilab 91, Soghat, Fakher-e-sarhad, MH- 97 and Tatara had lower counts and remained at par statistically. These varieties did not differ significantly from Bakhtawar 92, Suleman 98, and Pirsabak 91. The variety Raj 99, Bakhtawar 92, Suleman 98 and Pirsabak 91 showed resistance to the allelopathic effect (Table-1). The interaction clearly indicated that Raj 99 produced the maximum while Suleman 98 and Tatara resulted in the lowest number of normal seedlings over water applied seedlings. Interaction also shows that reduction in germination counts becomes more pronounced with increasing levels of Eucalyptus aqueous extract concentration. At 20% concentration all wheat varieties resulted in a significant reduction in germination counts when compared with control. MH-97, ingilab-91 and Soghat were worst affected at the highest concentration (20%) of Eucalyptus extract. Evidently all wheat varieties were adversely affected by extract application regarding the number of normal seedling over control. There was direct relationship between number of normal seedlings and extract concentration. These results could lead to the thought that E. camaldulensis L. leaf aqueous extract could reduce normal seedlings even in low concentration. These results are in conformity with those reported by McWhorter (1984) and Nandal et al., 1999a; 1999b).

Varieties	(Control) 0%	Concentration of Eucalyptus extract varietals 10% 15% 20%			
Mean	070	1070	1370	20	,,,,
Daman 98	21.00 ab ²	16.0 d-g	11.25 j-n	8.00 m-r	14.06 b
Dera 98	22.25 a	16.25 def	9.75 l-o	7.25 o-r	13.88 b
Punjab 96	20.0 abc	15.0 d-h	12.0 h-l	5.75 pqr	13.19 b
Inqilab 91	22.5 a	14.5 e-i	12.25 g-l	4.75 r	13.5 b
Soghat	23.0 a	15.75 d-g	12.75 g-l	4.75 r	14.06 b
Fakhar-e- Sarhad	22.5 a	16.0 d-g	10.0 k-o	5.5 qr	13.5 b
Bakhtawar 92	23.5 a	16.75 cde	11.25 j-n	8.00 m-r	14.88 ab
Raj 99	23.0 a	18.5 bcd	15.5 d-h	9.0 l-q	16.5 a
Suleman 98	21.75 ab	12.5 g-l	13.75 e-j	11.0 ј-о	14.75 ab
MH- 97	23.0 a	15.25 d-h	9.25 I-q	4.5 r	13.0 b
Pirsabak 91	22.5 a	15.25 d-h	11.75 I-m	9.0 l-q	14.63 ab
Tatara	23.5 a	12.5 g-l	9.5 l-p	7.5 n-r	13.25 b
Conc. Means	22.38 a	15.35 b	11.58 c	7.08 d	-

Table-1. Allelopathetic effects of Eucalyptus on germination counts of wheat varieties.

CV. = 16.73%, LSD_{0.05} for Concentrations = 0.954, LSD_{0.05} for varieties = 2.073 , LSD_{0.05} for Interaction = 3.306.

Germination (%)

Seed germination is considered to be the most critical stage especially under stress conditions. During germination, biochemical changes take place, which provide the basic framework for subsequent growth and development. The initial metabolic changes that occur immediately after the imbibitions of water are the increase in the hydrolytic enzymes such as alpha-amylase and protease. Alphaamylase is an important starch degrading enzyme in the endosperm of cereal grains. The reaction products provide substrate and an energy source for the embryo during germination. Inhibition of seed germination of crop plants is also due to disturbance in the activities of peroxidase, alpha-amylase and acid phosphates (Alam and Islam, 2002). The results presented in Table-2 show that wheat varieties have been influenced by different aqueous extracts of E. camaldulansis L. treatments. All the concentrations had inhibitory effect on the germination of all varieties as compared to the control treatment. It can be seen from the data in Table-2 that only wheat variety Raj 99

² Means sharing a letter in common in the respective category do not differ significantly by the LSD test at 5% probability level.

produced maximum number of seedlings (66%) over all other varieties which was non-significantly different from Bakhtawar 92, Suleman 98 and Pisabak 91. This indicates that these varieties had some tolerance to the adverse influence of allelochemicals contained in the extract. Punjab 96 and MH- 97 were found most sensitive towards extract application. It is very clear from these results that wheat crop sown near or under the Eucalyptus trees will be adversely affected and its germination (%) will be reduced upto about 50%. The interaction also showed that each concentration of extract had injurious effect on all wheat varieties than control treatment. The interaction among various concentration of Eucalyptus extract and wheat varieties depicted that Eucalyptus water extract at lower level (10%) has lower inhibitory effect as compared to higher concentration (20%) in all wheat varieties. MH-97, ingilab-91 and Soghat were more adversely affected at all levels of concentration. This gradual decrease in germination (%) was due to allelopathic effects of Eucalyptus extracts from lower concentration (10%) to higher concentration (20%) as compared to control. Tongma et al. (1998) also reported that germination (%) of tested plant species decreased when grown with sunflower. It can be summarized from the results that extract having any concentration of allelochemcial will reduce the wheat germination and ultimately reduction in yield. The variation in germination of different varieties might be due to the variation of genetics of these twelve varieties. These results are in agreement with those of Singh et al. (1992), Nandal et al. (1999a&b) and Patel et al. (2002) who all observed reduction in germination percentage with extract/leachates application to wheat seed.

Varieties	Concentration of Eucalyptus extract					
	Control	10%	15%	20%	Varietal Means	
Daman 98	84.00 ab	64.0 d-g	45.0 I-m	32.00 m-r	56.25 b	
Dera 98	89.0 a	65.0 def	39.0 I-o	29.00 o-r	55.5 b	
Punjab 96	80.0 abc	60.0 d-i	48.0 g-l	23.00 pqr	52.75 b	
Ingilab 91	90.0 a	58.0 e-j	49.0 f-l	19.00 r	54.0 b	
Soghat	92.00 a	63.0 d-g	51.0 f-l	19.00 r	56.25 b	
Fakhar-e-sarhad	90.0 a	64.0 d-g	40.0 k-o	22.00 qr	54.0 b	
Bakhtawar 92	94.0 a	67.0 cde	45.0 I-n	32.00 m-r	59.50 ab	
Raj 99	92.0 a	74.0 bcd	62.0 d-h	36.00 l-q	66.00 a	
Suleman 98	87.0 ab	50.0 f-l	55.0 e-k	44.00 j-o	59.00 ab	
MH- 97	92.0 a	61.0 d-h	37.0 l-q	18.00 r	52.00 b	
Pirsabak 91	90.0 a	61.0 d-h	47.0 h-m	36.00 l-q	58.5 ab	
Tatara	94.0 a	50.0 f-l	38.0 l-p	30.00 n-r	53.00 b	
Conc. Means	89.50 a	61.42 b	46.33 c	28.33 d	-	

Table-2. Allelopathetic effects of Eucalyptus on germination (%) of wheat varieties.

CV. = 16.73%, LSD_{0.05} for varieties = 1.476, LSD_{0.05} for concentration levels = 3.818, LSD_{0.05} for Interaction = 13.22

Fresh weight (g)

Two weeks old seedlings were uprooted and data were recorded and analyzed. The results are presented in Tables-3. The Eucalyptus extract had decreased the fresh weight. The wheat variety Bakhtawar 92 was more adversely affected than all other varieties. The extract concentration of 10, 15 and 20% decreased the fresh weight of all varieties. Significant effect was noted among wheat varieties and Eucalyptus extract at different concentration levels. The interaction showed direct relationship between concentration and decrease in fresh weight. Raj 99 proved to be the more fresh weight producing variety as compared to other varieties at 20% concentrated extract. At lower level (10%) concentration, comparatively less reduction in their fresh weights was observed. This indicates that wheat seedlings affected by Eucalyptus extract can tolerate stress up to some extents, but as concentration increases, significant reduction in fresh weight and growth of seedling occurs in twelve wheat varieties. Aqueous Eucalyptus extract of various concentrations inhibited the germination of twelve wheat varieties and also negatively affected their fresh weights. Similar results were obtained by Yang et al. (2002) after treatment of rice plant with three allelopathic phenolics.

Table-3. Allelopathetic effects of Eucalyptus on fresh weight (g) of wheat varieties.

	Concentration of Eucalyptus extract				Variety Means
Varieties	Control	10%	15%	20%	
Daman 98	7.45 a	4.18 f-l	2.98 l-p	1.47 pq	4.02 bcd
Dera 98	6.96 ab	6.37 a-d	3.41 I-n	1.79 opq	4.63 ab
Punjab 96	6.63 abc	5.02 d-h	3.44 h-n	1.82 opq	4.23 abc
Inqilab 91	5.48 b-f	4.78 d-k	2.52 m-q	1.93 n-q	3.67 bcd
Soghat	6.05 a-e	5.44 b-f	2.88 l-p	1.22 q	3.90 bcd
Fakhar-e- Sarhad	6.080 а-е	5.66 b-f	4.81 d-j	1.59 pq	4.53 ab
Bakhtawar 92	5.16 c-g	3.52 h-n	2.35 m-q	1.16 q	3.04 d
Raj 99	7.58 a	6.31 а-е	4.17 f-l	2.44 m-q	5.12 a
Suleman 98	4.80 d-k	4.32 f-l	3.65 g-m	1.26 q	3.50 cd
MH- 97	5.40 b-f	3.21 k-o	3.26 j-o	1.16 q	3.26 cd
Pirsabak 91	5.39 b-f	4.83 d-j	4.70 e-k	1.47 pq	4.00 bc
Tatara	4.93 d-i	4.25 f-l	2.99 l-p	1.20 q	3.34 cd
Concentration Means	5.99 a	4.82 b	3.43 c	1.54 d	-

CV. = 23.80%, LSD_{0.05} for varieties= 0.874, LSD_{0.05} for concentrations= 0.38, LSD_{0.05} for interaction= 1.24

Dry weight (g)

The data in Table-4 reveal that aqueous extracts of different concentrations significantly reduced the dry weight of wheat seedlings The interaction among wheat varieties over control. and concentrations was also found to be significant. The adverse effect gradually increased which resulted in the dry weight decreased of seedlings. The reason could be the decrease in fresh weight of seedling. Another probable reason could be the inhibitory effect of allelochemicals in uptake of water by seedling and reduction in other physiological processes of wheat varieties. Similar findings have been reported by Patel et al. (2002) who reported that Eucalyptus trees reduced germination, growth and yield of wheat crop. This harmful effect of different aqueous extract pointed out that allelochemicals in any concentration present in soil could decrease the dry weight and yield of any wheat genotype. Several studies have reported that many secondary metabolites are released into the environment, either as exudation from living plant tissues or by decomposition of plant material under certain conditions (Einhelling, 1995). These chemicals like phenolics, terpenoids and alkaloids and their derivatives are potential inhibitors of germination, seedling growth, fresh weights and dry weights [Herro and Callaway, (2003), Siddiqui and Zaman, (2004), Siddigui and Zaman, (2005)]. Dawar et al. (2007) observed that aqueous Eucalyptus extract was effective in general to cause growth inhibition. But all plants of same specie were not equally susceptible to aqueous extracts of Eucalyptus.

CONCLUSIONS AND RECOMMENDATIONS

The present investigation revealed that aqueous extract of *E. camaldulensis* at various concentration levels inhibited the germination, reduced fresh weights and dry weights of wheat seedlings. Its effectiveness on germination and growth suggests that leaves of *E. camaldulensis* may act as a source of allelochemicals after being released into soil or after decomposition. The presence of allelochemicals negatively affects the neighboring or successional plants.

There is a need to provide information to farmers about plantation of *Eucalyptus* spp. and their allelopathic effects. Further studies are suggested to clarify the possible physiological mechanism related to allelopathic effect on plants.

	Concentration of Eucalyptus extract				Variety Means
Varieties	Control	10%	15%	20%	_
Daman 98	1.42 abc	0.90 e-l	0.66 j-n	0.23 p-s	0.80 ab
Dera 98	1.25 а-е	1.08 b-g	0.58 k-q	0.23 p-s	0.78 ab
Punjab 96	1.27 а-е	0.78 f-m	0.60 k-p	0.22 p-s	0.72 bc
Inqilab 91	1.33 a-d	0.94 e-k	0.61 k-o	0.29 n-s	0.79 ab
Soghat	1.15 bcdef	1.03 d-j	0.69 h-m	0.16 s	0.76 abc
Fakhar-e- Sarhad	1.28 a-e	1.05 c-i	1.06 c-h	0.21 qrs	0.90 a
Bakhtawar 92	1.44 ab	0.60 k-p	0.58 k-q	0.19 rs	0.70 bc
Raj 99	1.53 a	0.91 e-l	1.01 d-j	0.26 p-s	0.93 a
Suleman 98	1.19 a-e	0.80 e-m	0.61 i-n	0.18 rs	0.71 bc
MH- 97	1.24 а-е	0.55 l-r	0.50 l-s	0.13 s	0.60 c
Pirsabak 91	1.22 а-е	0.59 k-p	0.69 h-m	0.21 qrs	0.68 bc
Tatara	1.25 а-е	0.77 g-m	0.60 k-p	0.15 s	0.69 bc
Concentration Means	1.30 a	0.83 b	0.69 c	0.20 d	-

Table-4. Allelopathetic effects of Eucalyptus on dry weight (g) of wheat varieties.

CV. = 29.86%,LSD_{0.05} for varieties = 0.154,LSD_{0.05} for Concentration levels = 0.091, LSD_{0.05} for Interaction = 0.317

REFERENCES CITED

- Alam, S.M. and E.U. Islam. 2002. Effect of aqueous extract of Leaf, stem and root of nettleleaf goosefoot and NaCl on germination and seedling growth of rice. Pak. J. Sci. Tech. 1(2): 47-52.
- Arshad, M. and W.T. Frakenberger Jr. 1998. Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 62: 145-151.
- Caton, B. P., A.M., Mortimer, T.C. Hill, J.E. Gibson, and A.J. Fisher. 1999. Weed morphology effects on competitiveness for light in direct-seeded rice. Proc. 17th Asian-Pacific, weed sci., soc. Conf., Bangkok, 1.A, 116-120.
- Dawar, S., M. Summaira, Younus, M. Tariq and M.J. Zaki. 2007. Use of Eucalyptus sp., in the control of root infecting fungi on mungbem and chick-pea. Pak J. Bot. 39(3): 975-979.
- Einhelling, F.A. 1995. Mechanism of action of allelochemicals in allelopathy. *In* Allelopathy: organisms, processes, and applications. K. Inderjit, M.M. Dakshini and F.A. Einhellig (eds.). American Chemical Society. pp. 96-116.

- Gill, A.S. 1994. Effect of trees on the yield of wheat varieties in semiarid conditions. *Van Anusandhan* 9: 8-12.Haung, C.H., Yuan L., Ming, Y. and zhi–D.H. 1999. Allelopathic effect of aqueous extracts of *Eucalyptus citriodora* L. and *Eucalyptus tereticornis* L. on germination and growth of cereals. Environmental Bot. 41 (2): 47-25.
- Herro, J.L., and R.M. Callaway. 2003. Allelopathy and exotic plant invasion. Plant and Soil 256: 29-39.
- Hussain, F. and M.A. Gadoon. 1981. Allelopathic effects of *Sorghum vulgare* Pers. Oecologia (Berl.) 51:284 288.
- Iqbal, Z., I.Hussain, A.Hussain and M.Y.Ashraf. 2003. Genetic variability to essential oil contents and composition in five species of Eucalyptus. Pak. J. Bot. 35 (5): 843-852.
- McWhorter, C.G. 1984. Future needs in weed science. Weed Sci. 32: 850-855.
- Nandal, D.P.S., P. Rana, and A. Kumar. 1999a. Growth and yield of wheat (*Triticum aestivum*) under different tree spacings of *Dalbergia sissoo* based agrisilviculture. Indian J. Agron.44: 256-260.
- Nandal, D.P.S., S.S Birla and S.S. Narwal. 1999b. Allelopathic influence of Eucalyptus litter on germination, yield and yield components of five wheat varieties. Proc. 1st Nat. Symp., Allelopathy in Agric Systems. 12-14 Feb.
- Nandal and A. Dhillon. 1999. Allelopathic effects of poplar (*Populus deltoides* Bartr Ex Marsh): an assessment on the response of wheat varieties under laboratory and field conditions. Proceedings of the Fourth World Congress on Allelopathy 21–26 August 2005, Charles Sturt Univ., Wagga Wagga, NSW, Australia.
- Patel, B., B. Achariya and N.P. Bupripata. 2002 Allelopathic effects of Eucalyptus leaves on seed germination and seedling growth of winter wheat. Proc. Ind. Soc. of Allelop. pp115-119.
- Siddiqui, K.M. and A. Hussain. 1980. Introduction of Eucalyptus. Pak.J. Forest. 30:18-22.
- Siddiqui, Z.S. and A.U. Zaman. 2004. Effects of systemic fungicide (benlate) on germination, seedling growth, biomass and phenolic contents of two different varieties of *Zea mays*. Pak. J. Bot. 36: 577-582.

- Siddiqui, Z.S. and A.U. Zaman. 2005. Effects of *capsicum leachates* on germination, seedling growth and chlorophyll accumulation in *Vigna radiata* L. Wilczek. seedlings. Pak. J. Bot. 37(4): 941-947.
- Singh, A., R.S.Dhanda and P.K. Ralhan. 1993. Performance of wheat varieties under poplar plantation in Punjab. Agroforestry Systems, 22: 83-86.
- Singh, S., H.S. Singh, and S. S. Mishra. 1992. Wheat response to Allelopathic. Effects of some *Eucalyptus citriodora* L. and their residues. Indian J. Agron., 43 (2): 256-259.
- Steel, R.G.D. and J.H.Torrie. 1992. Principles and procedures of statistics. McGraw Hill Book Company Inc. New York.
- Tang, C. S., K.Komai and R.S.Haung. 1989. *In* Phytochemical Ecology: allelochemicals, mycotoxins and insect pheromones and allomones. C.H. Chou and G.R. Waller (Eds.). Institute of Botany Academia Sinica Monograph series 9, Taipei, Roc, pp. 217-223.
- Tongma, S., K. Kobayashi and K.Kusui. 1998. Allelopathic activity of Mexican sunflower in soil. Weed Sci., 46: 432-437.
- Yaduraju, N.T., K.N. Ahuja. 1996. Allelopathy. *In* The Illustrated dictionary of weed science. N.T.Yaduraju and K.N. Ahuja (eds.). Venus Publishing House, 11/298 press colony, Mayapuri, New Dehli, India, pp. 180.
- Yang, C.M., 1.F. Chang, S.J.Lin and C.H. Chou. 2002. effects of three allelopathic phenolics on chlorophyll accumulation of rice (*Oryza sativa* L.) seedlings I: inhibition of supply orientation. Bot. Bull. Acad. Sinica 43: 299-304.